Preferential Rotation of Chiral Dipoles in Isotropic Turbulence.
نویسندگان
چکیده
We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical simulations. The statistics of chiral dipole spinning determined with this model show surprisingly good agreement with the measured spinning of much larger chiral dipoles in the experiments.
منابع مشابه
Scalings of Inverse Energy Transfer and Energy Decay in 3-D Decaying Isotropic Turbulence with Non-rotating or Rotating Frame of Reference
Energy development of decaying isotropic turbulence in a 3-D periodic cube with non-rotating or rotating frames of reference is studied through direct numerical simulation using GPU accelerated lattice Boltzmann method. The initial turbulence is isotropic, generated in spectral space with prescribed energy spectrum E(κ)~κm in a range between κmin and ...
متن کاملGPU accelerated lattice Boltzmann simulation for rotational turbulence
In this work, we numerically study decaying isotropic turbulence in periodic cubes with frame rotation using the lattice Boltzmann method (LBM) and present the results of rotation effects on turbulence. The implementation of LBM is on a GPU (Graphic Processing Unit) platform using CUDA (Compute Unified Device Architecture). Through the accelerated GPU-LBM simulation, we look into various effect...
متن کاملFiltered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion
A numerical study based on the Eulerian-Lagrangian formulation is performed for dispersed phase motion in a turbulent flow. The effect of spatial filtering, commonly employed in large-eddy simulations, and the role of the subgrid scale turbulence on the statistics of heavy particles, including preferential concentration, are studied through a priori analysis of DNS of particle-laden forced isot...
متن کاملSimulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar
Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...
متن کاملAnalytical theory of forced rotating sheared turbulence: the parallel case.
Forced turbulence combined with the effect of rotation and shear flow is studied. In a previous paper [N. Leprovost and E. J. Kim, Phys. Rev. E 78, 016301 (2008)], we considered the case where the shear and the rotation are perpendicular. Here, we consider the complementary case of parallel rotation and shear, elucidating how rotation and flow shear influence the generation of shear flow (e.g.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 117 15 شماره
صفحات -
تاریخ انتشار 2016